## Are Einstein's Boxes an argument for nonlocality?

### (an experimental proposal)

Today I want to discuss a topic from an excellent book by Jean Bricmont: Making Sense of Quantum Mechanics which presents the best arguments for the Bohmian interpretation. Although I do not agree with this approach I appreciate the clarity of the arguments and I want to present my counter argument.

On page 112 there is the following statement: "...

*the conclusion of his [Bell] argument, combined with the EPR argument is rather that there are nonlocal physical effects (and not just correlations between distant events) in Nature*".
To simplify the argument to its bare essentials, a thought experiment is presented in section 4.2: Einstein's boxes. Here is how the argument goes: start with a box B and a particle in the box, then cut the box into two half-boxes B1 and B2. If the original state is \(|B\rangle\), after cutting the state it becomes:

\(\frac{1}{\sqrt{2}}(|B_1\rangle+|B_2\rangle)\)

Then the two halves are spatially separated and one box is opened. Of course the expected thing happens: the particle is always found in one of the half-boxes. Now suppose we find the particle in B2. Here is the dilemma: either there is action at a distance in nature (opening B1 changes the situation at B2), or the particle was in B2 all along and quantum mechanics is incomplete because \(\frac{1}{\sqrt{2}}(|B_1\rangle+|B_2\rangle)\) does not describe what is going on.

**My take on this is that the dilemma is incorrect. Splitting the box amounts to a measurement regardless if you look inside the boxes or not and the particle will be in either B1 or B2.**

Here is an experimental proposal to prove that after cutting the box the state is not \(\frac{1}{\sqrt{2}}(|B_1\rangle+|B_2\rangle)\):

split the box and connect the two halves to two arms of a Mach-Zehnder interferometer (bypassing the first beam splitter).

**Do you get interference or not? I say you will not get any interference because by weighing the boxes before releasing the particle inside the interferometer gives you the which way information.**

If we do not physically split the box, then indeed \(|B\rangle = \frac{1}{\sqrt{2}}(|B_1\rangle+|B_2\rangle)\), but if we do physically split it \(|B\rangle \neq \frac{1}{\sqrt{2}}(|B_1\rangle+|B_2\rangle)\). There is a hidden assumption in Einstein's boxes argument: realism which demands non-contextuality.

**Nature and quantum mechanics is contextual: w****hen we do introduce the divider the experimental context changes.**
Bohmian's supporters will argue that always \(|B\rangle = \frac{1}{\sqrt{2}}(|B_1\rangle+|B_2\rangle)\). There is a simple way to convince me I am wrong: do the experiment above and show you can tune the M-Z interferometer in such a way that there is destructive interference preventing the particle to exit at one detector.