Processing math: 100%

Wednesday, December 10, 2014

Fun with k-Algebras


Continuing from last time, suppose we have a bilinear map f from V×W to L where V, W, and L are vector spaces. Then there is a universal property function Φ from V×W  to VW and there is a unique linear map g from VW to L such that the diagram below commutes:

               Φ
V×W-------> VW
    \                        |
       \                     |
           \                 |
       f    \              | g
                  \          |
                     \       |
                      _|   \/
                           L

The proof is trivial: "f" is used to define a function from the free vector space F(V×W) to L and then we make a descent by modding by the usual equivalence relation of the tensor product to define the map g.

This all looks a bit pedantic, but the point is that any multiplication rule in an algebra A is a bilinear map from A×A to A and we can now put it in tensor formalism.

In particular consider the algebra A of matrices over a field k. Matrix multiplication is associative, and we also have a unit of the algebra: the diagonal matrix with the where the elements are the identity of k.  This is a prototypical example of what is called a k-algebra.

Can we formalize the associativity and the unit using the tensor product language? Indeed we can and here is the formal definition:

A k-algebra is a k-vector space A which has a linear map m:AAA called the multiplication and a unit u:kA such that the following diagrams commute:
                     m1
AAA ----------> AA
              |                             |
              |                             |
  1m |                             |  m
              |                             |
              |                             |
             \/                            \/
          AA   ---------->    A
                           m

and

                          AA
                    _                    _
                      |         |         |
u1       /              |                \ 1u
              /                 |                    \
kA                      | m               Ak
              \                 |                     /
                  \              |                 /
                       _|      \/          |_
                               A

Please excuse the sloppiness of the diagrams, it is a real pain to draw them.

So what are those commuting diagrams really saying? 

The first one states that:

m(m(ab)c)=m(am(bc))

In other words: associativity of the multiplication: (a b) c = a (b c)

The second one defines the algebra unit:

u(1k)a=au(1k)

which means that u(1k)=1A

So why do we torture ourselves with this fancy pictorial way of representing trivial properties of algebra? Because now we can do a very powerful thing: reverse the direction of all the arrows. What do get when we do that? We get a brand new concept: the coproduct. Stay tuned next time to explore the wondeful properties of this new mathematical concept.

No comments:

Post a Comment